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The proportion of pecky rice grains has been empirically estimated using 1 

composite sampling with subsampling. The procedure is summarized as follows: (1) a 2 

fixed number of rice plants (n1) are drawn at random in the paddy field; (2) all the rice 3 

grains in the collected rice plants are mixed well to form a composite; (3) a portion of the 4 

grains (n2) are drawn at random from the composite; and (4) the collected grains are 5 

examined by eye to estimate the proportion of pecky rice grains. We propose a method to 6 

determine the optimal sample size in estimating the proportion of defective items by this 7 

kind of composite sampling with subsampling. Spatial heterogeneity in the proportion of 8 

defective items is included in the estimation. We use Taylor’s power law to describe the 9 

density-dependent change of spatial heterogeneity. In controlling the precision of the 10 

estimate, we use the relative precision (D) that is defined by the coefficient of variation of 11 

the estimated proportion. We propose a rejection procedure where the product is rejected 12 

if the estimate of proportion with D = 0.25 is larger than a predetermined tolerable 13 

threshold of proportion. We further consider another control criterion where the 14 

consumer’s risk (β) is controlled by a zero-tolerance method. The relation between two 15 

control criteria is examined.  16 

 17 

Keywords: Consumer’s risk; Increment sampling; Relative precision; Spatial 18 
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1. INTRODUCTION 1 

The relative significance of insect pest species in paddy fields has greatly changed 2 

in the past 50 years in Japan (Kiritani 2006). The populations of the three classical major 3 

pests, the rice stem borer, Chilo suppressalis, the green rice leafhopper, Nephotettix 4 

cincticeps, and the small brown planthopper, Laodelphax striatellus, have greatly 5 

decreased in this time (Yamamura et al. 2006). The agricultural loss caused by these 6 

insects decreased accordingly. On the other hand, the agricultural loss caused by several 7 

rice bugs has increased since about 1995. The rice bugs are becoming the most serious 8 

insect pests in paddy fields. These rice bugs consist of several species of Pentatomidae, 9 

Coreidae, Alydidae and Miridae. The rice leaf bug, Trigonotylus caelestialium 10 

(Kirkaldy), is especially important in the northern part of Japan. These insects suck the 11 

rice grain to generate pecky rice grains. The existence of pecky rice grains causes serious 12 

problems even if the proportion of pecky rice grains is quite small. The grade of rice falls 13 

from first grade to second grade if the proportion of colored grains including pecky rice 14 

grains is larger than 0.001 (Ministry of Agriculture Forestry and Fisheries 2001). The 15 

market price of rice seriously decreases due to this downgrading. For example, the price 16 

of 30 kg rice grains may change from 7500 yen to 7000 yen.  17 

The proportion of pecky rice grains is usually quite small, and hence a composite 18 

sampling procedure with subsampling has been empirically used in estimating the 19 

proportion. The procedure is summarized as follows: (1) a fixed number of rice plants are 20 

drawn at random in the paddy field and brought to the laboratory; (2) all the rice grains in 21 

the collected rice plants are mixed well to form a composite; (3) a portion of grains are 22 

drawn at random from the composite; and (4) the selected grains are examined by eye to 23 

estimate the proportion of pecky rice grains. A plant corresponds to the quantity called an 24 

increment. A rice grain corresponds to a sampling item.  25 

Various composite sampling procedures that examine composites of sampling 26 
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items instead of examining individual sampling items have been developed as 1 

cost-effective procedures (Boswell et al. 1988; Lovinson et al. 1994; Lancaster and 2 

Keller-McNulty 1998; United States Environmental Protection Agency 2000; Patil 3 

2002). Some of these procedures are used for classification purposes, for example, to find 4 

HIV-infected persons effectively (Dorfman 1943; Sterrett 1957; Bhattacharyya et al. 5 

1979; Emmanuel et al. 1988; Zenios and Wein 1998; Johnson and Patil 2001). Other 6 

procedures of composite sampling are used for estimation purposes. The parameters of 7 

interest are either continuous variables or binary variables. In applying the composite 8 

sampling to continuous variables, the theory has been developed for various sampling 9 

schemes that allow the subsampling from composites (Brown and Fisher 1972; Rohde 10 

1976; Elder et al. 1980; Rohlf et al. 1996). In applying the composite sampling to binary 11 

variables, however, the application is mostly confined to the procedure called group 12 

testing (Chiang and Reeves 1962; Thompson 1962; Swallow 1985; Burrows 1987; 13 

Swallow 1987; Chen and Swallow 1990; Gastwirth and Johnson 1994; Hughes-Oliver 14 

and Swallow 1994; Chick 1996; Zenios and Wein 1998; Brookmeyer 1999; Colón et al. 15 

2001; Tebbs et al. 2003; Hsu 2005; Bar-Lev et al. 2006; Yamamura and Hino 2007). In a 16 

group testing procedure for estimating the proportion of defective items, the sampling 17 

items are drawn at random and mixed, and all the items in the composite are used to 18 

examine the existence of defective items. This procedure is repeated several times to 19 

obtain an estimate of the proportion of defective items.  20 

The sampling procedure for estimating the proportion of pecky rice grains is 21 

different from group testing procedures in two aspects: (1) rice grains are not drawn at 22 

random in the field, but rice grains are instead drawn as increments (i.e., clusters) given 23 

by rice plants; and (2) only a portion of the rice grains in the composite is measured by 24 

using subsampling from the composite. In this paper, we discuss the method of 25 

determining the sample size in estimating the proportion of defective items by this kind of 26 

sampling. In controlling the precision of the estimate, we use the relative precision (D) 27 
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that is defined by the coefficient of variation (CV) of the estimated proportion. We use 1 

Taylor’s power law to describe the relation between the mean and spatial heterogeneity in 2 

the proportion of defective items. We propose a rejection procedure where the product is 3 

rejected if the estimate of proportion with D = 0.25 is larger than a predetermined 4 

tolerable threshold of proportion. We further consider another control criterion where the 5 

consumer’s risk (β) is controlled by a zero-tolerance method. The relation between two 6 

control criteria is examined. 7 

 8 

 9 

2. SPECIFIC MODEL 10 

We use the following notations.  11 

si = the number of grains in the ith plant, 12 

n1 = the number of drawn rice plants, 13 

n2 = the number of rice grains drawn from the composite ( 2 1in s n≤ ), 14 

Pi = the probability that a rice grain around the ith plant is pecky, 15 

P0 = the average of Pi over the sampling field, i.e., P0 = E(Pi), 16 

Xi = the number of pecky rice grains in the ith plant, 17 
Y = the total number of pecky rice grains in the composite, i.e., 1

1
n

iY X=∑ , 18 

Z = the number of pecky rice grains in the n2 grains that are drawn from the composite. 19 

 20 

We want to estimate P0, that is, the average of the proportion of pecky rice grains. The 21 

proportion of pecky rice grains per plant fluctuates depending on the spatial position of 22 

the rice plants in the field. We assume that the proportion of pecky rice grains fluctuate 23 

following a distribution. This type of estimation is sometimes called ‘model-based 24 

approach’ (Lohr 1999, p47; Thompson 2002, p22). For simplicity, we first assume a 25 

specific form of distribution in describing the spatial heterogeneity. A beta distribution is 26 
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frequently used to describe the heterogeneity in the proportions. The proportion of pecky 1 

rice grains is usually very small. A beta distribution can be approximately described by a 2 

gamma distribution when the average proportion is small, and hence we use a gamma 3 

distribution that is more tractable than a beta distribution. The probability density of Pi is 4 

given by 5 

 6 

( )11( ) exp
( )

k kf p p p
k
λ λ−= −

Γ
,      (2.1) 7 

 8 

where k and λ are the shape parameter and scale parameter, respectively. The mean (P0) 9 

and variance (V(Pi)) are given by k/λ and k/λ2, respectively. Thus, we are estimating the 10 

parameter of the model, k/λ, in this case. The number of pecky rice grains in the ith plant 11 

(Xi) for a given Pi is given by a binomial distribution, but we can use a Poisson 12 

distribution as an approximation if the Pi is sufficiently small. If we use a distribution 13 

which is conditional to si, we have 14 

 15 

( )1Pr( | ) ( ) exp
!

x
i i i iX x P p s p s p

x
= = = − ,     (2.2) 16 

 17 

Then, the probability density of Xi is given by  18 

 19 

0
Pr( ) Pr( | ) ( )i i iX x X x P p f p dp

∞
= = = =∫  20 

( ) 1
! ( )

xk
i i

i

s sk x
x k sλ λ

− ⎛ ⎞Γ + ⎛ ⎞= + ⎜ ⎟⎜ ⎟Γ +⎝ ⎠ ⎝ ⎠
,     (2.3) 21 

 22 

which is a negative binomial distribution with mean sik/λ and variance sik(λ+ si)/ λ2.  23 

For simplicity, we assume that the number of grains in a plant (si) is almost the 24 

same for all plants, and we denote it by s by omitting the subscript. We assume that s is 25 
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known to us beforehand. Then, the distribution of Y is given by the n1 times convolution 1 

of (2.3). We readily obtain the following distribution due to the reproducibility of the 2 

negative binomial distribution (Minotani 2003). 3 

 4 
1

1

1

( )Pr( ) 1
! ( )

n k yn k y s sY y
y n k sλ λ

−Γ + ⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟Γ +⎝ ⎠ ⎝ ⎠
.    (2.4) 5 

 6 

The mean and variance of Y are given by sn1k/λand sn1k(λ+ s)/λ2, respectively.  7 

The probability distribution of the number of pecky rice grains (Z) in the n2 grains 8 

that are obtained by a subsampling from the composite is most exactly expressed by a 9 

hypergeometric distribution. 10 

 11 
1 1

2 2
Pr( | )

n s y n sy
Z z Y y

n z nz
−⎛ ⎞ ⎛ ⎞⎛ ⎞

= = = ⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠ ⎝ ⎠
.     (2.5) 12 

 13 

If the proportion of pecky rice grains in the composite (Y/(n1s)) is sufficiently small, we 14 

can approximately consider that each pecky rice grain in the composite is drawn by an 15 

equal probability, n2/(n1s). Kuno (1991) used this form of binomial approximation of 16 

hypergeometric distribution in deriving the sample size for zero-tolerance method. 17 

 18 

2 2

1 1
Pr( | ) 1

z y zy n nZ z Y y
z n s n s

−
⎛ ⎞ ⎛ ⎞⎛ ⎞

= = = −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

.    (2.6) 19 

 20 

Then, the number of pecky rice grains (Z) in the subsample is given either by a compound 21 

distribution (i.e., a stopped-sum distribution by the terminology of Johnson et al. 2005) or 22 

a mixture distribution; a compound negative binomial distribution that is compounded 23 

with Bernoulli distribution of the parameter n2/(n1s); or a mixture binomial distribution 24 

where the number of trials (Y) follows a negative binomial distribution. The compound 25 
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distribution or the mixture distribution yields the negative binomial distribution where the 1 

mean is multiplied by n2/(n1s) while the shape parameter is the same (Shimizu 2006). 2 

 3 
1

1 2 2

1 1 1 2

( )Pr( ) 1
! ( )

n k z
n k z n nZ z

z n k n n nλ λ

−
⎛ ⎞ ⎛ ⎞Γ +

= = +⎜ ⎟ ⎜ ⎟Γ +⎝ ⎠ ⎝ ⎠
.    (2.7) 4 

 5 

The mean and variance of Z are given by n2k/λand n2k(n1λ + n2)/(n1λ2), respectively. The 6 

estimate of P0 is given by 7 

 8 

0̂P  = Z/n2.         (2.8) 9 

 10 

Hence, (2.7) yields the following mean and variance of the estimate. 11 

 12 

( )0 0
ˆ /E P k Pλ= = ,       (2.9) 13 

( ) 1 2
0 2

1 2

( )ˆ k n nV P
n n
λ
λ
+

= .       (2.10) 14 

 15 

3. GENERAL MODEL 16 

We can extend the above argument to general distributions of the proportion of 17 

pecky rice grains. The mean and variance of pecky rice grains (Xi) in the ith plant with a 18 

known si are given by 19 

 20 

( )
0

( | ) ( )i i iE X E X P p f p dp
∞

= =∫  21 

00
( )i is pf p dp s P

∞
= =∫ ,      (3.1) 22 

( ) 2
00

(( ) | ) ( )i i i iV X E X s P P p f p dp
∞

= − =∫   23 

2 2
00

( ( ) ( ) | ) ( )i i i i i i iE X s P s P s P P p f p dp
∞

= − + − =∫  24 
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2 2
00

( ( ) ) ( )i is p s p P f p dp
∞

= + −∫  1 

2
0 ( )i i is P s V P= + .       (3.2) 2 

 3 

The rearrangement of (3.1) and (3.2) yields the following equation. 4 

 5 

0
i

i

XP E
s

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
,        (3.3) 6 

2( ) i i
i

i i

X XV P V E
s s

⎛ ⎞⎛ ⎞
= − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

.      (3.4) 7 

 8 

We can obtain the moment estimates of P0 and V(Pi) by substituting the mean and 9 

variance of Xi/si and the mean of Xi/si
2 into (3.3) and (3.4). Numerical examples of 10 

calculation are shown in the electronic material that is stored in JABES site 11 

(http://www.amstat.org/publications/jabes/data.shtml). As for the mean and variance of 12 

the total number of pecky rice grains in the composite (Y), we have the following 13 

equation.  14 

 15 

( )
1

0
1

n

i
i

E Y s P
=

=∑ ,        (3.5) 16 

( )
1 2

0
1

( ( ))
n

i i i
i

V Y s P s V P
=

= +∑ .      (3.6) 17 

 18 

For simplicity, we again assume that the number of grains in a plant (si) is almost the 19 

same for all plants, and we denote it by s by omitting the subscript. We assume that s is 20 

known to us beforehand.  21 

The probability distribution of the number of pecky rice grains (Z) in the n2 grains 22 

that are obtained by a subsampling from the composite is expressed by a hypergeometric 23 

distribution given by (2.5). The mean and variance are given by 24 
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 1 
2

1
( | ) n yE Z Y y

n s
= = ,       (3.7) 2 

2 1 2

1 1 1

( )( | ) 1
1

n n s n y yV Z Y y
n s n s n s

⎛ ⎞−
= = −⎜ ⎟− ⎝ ⎠

 3 

2 1 2

1 1

( )n n s n y
n s n s
−

≈  4 

2 2

1 1
1n ny

n s n s
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

.       (3.8) 5 

 6 

We again used a binomial approximation where y is the number of trials and n2/(n1s) is the 7 

probability of occurrence. This approximation will be valid because we are considering a 8 

situation where the proportion of pecky rice grains in the composite (Y/(n1s)) is 9 

sufficiently small. The expectation of 0̂P  is given by 10 

 11 

( )0
2 0 0

1ˆ Pr( | ) Pr( )
y

y z
E P z Z z Y y Y y

n

∞

= =
= = = =∑ ∑  12 

0P= .        (3.9) 13 

 14 

Thus, 0̂P  is an unbiased estimate of P0. The variance of 0̂P  is given by 15 

 16 

( ) ( ) 2
0 2

0 02

1ˆ Pr( | ) Pr( )
y

y z
V P z E Z Z z Y y Y y

n

∞

= =
= − = = =⎡ ⎤⎣ ⎦∑ ∑  17 

( ) ( )( )22
2

0 02

1 ( | ) ( | ) Pr( | ) Pr( )
y

y z
z E Z Y y E Z Y y E Z Z z Y y Y y

n

∞

= =

⎡ ⎤= − = + = − = = =⎢ ⎥⎣ ⎦∑ ∑18 

2
2 2 2

2 2
1 1 102 2

1 11 Pr( ) ( )
y

n n ny Y y V Y
n s n s n sn n

∞

=

⎡ ⎤⎛ ⎞ ⎛ ⎞
≈ − = +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
∑  19 

0

2 1

( )iP V P
n n

= + ,       (3.10) 20 

 21 
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where we used the binomial approximation of (3.8). The rearrangement of (3.9) and 1 

(3.10) yields the following equation. 2 

 3 

1
1 0 0

2
ˆ ˆ( ) ( ) ( )i

nV P n V P E P
n

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
.      (3.11) 4 

 5 

If we could estimate the mean and variance of 0̂P  by repeating the composite sampling in 6 

the same field, we can obtain the moment estimates of P0 and V(Pi) by using (3.9) and 7 

(3.11), although such an estimation is not practical in our case.  8 

 9 

 10 

4. DEFINITION OF PRECISION 11 

If the distribution of 0̂P  could be approximately described by a normal 12 

distribution with a mean P0 and a fixed variance 0̂( )V P , the 95% confidence interval of 13 

0̂P  is given by 0 0
ˆ ˆ1.96 ( )P V P± . We can keep the width of confidence interval at a 14 

constant by controlling 0̂( )V P  at a constant. However, P0 does not have negative 15 

quantity; P0 will be rather determined by a multiplicative manner than by an additive 16 

manner. Hence, it will be preferable to keep the relative width of confidence interval at a 17 

constant instead of keeping the absolute width of confidence interval at a constant. Then, 18 

instead of controlling the quantity of 0̂( )V P  at a constant, we control the precision by the 19 

relative precision (D) defined by the coefficient of variation (CV) of the estimates (Kuno 20 

1986): 21 

 22 

0 0
ˆ( )D V P P= .        (4.1) 23 

 24 

The required quantity of D changes depending on the purpose of the control. By 25 

substituting (3.10) into (4.1), we obtain 26 
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 1 
2

2
2 0 1 0

( )1 iV PD
n P n P

= + .       (4.2) 2 

 3 

For a fixed set of n1 and D, we can calculate the required quantity of n2 by 4 

 5 
1 0

2 2 2
1 0 ( )i

n Pn
D n P V P

=
−

.       (4.3) 6 

 7 

We have an inequality, 1 2sn n≥ . Hence, (4.3) indicates that n1 must satisfy the following 8 

condition: 9 

 10 
0

1 2 2
0

( )iP sV Pn
D sP
+

≥ .       (4.4) 11 

 12 

 13 

5. TAYLOR’S POWER LAW 14 

The spatial distribution of the proportion of pecky rice grains will change 15 

depending on the spatial distribution of rice bugs. The distribution of insects can be 16 

generally described by Taylor’s power law (Taylor 1961; Taylor et al. 1978; Taylor et al. 17 

1979; Taylor 1984). Let μ and σ2 be the spatial mean and variance of the number of 18 

insects, respectively. Then, we frequently find a linear relation called Taylor’s power law: 19 

 20 
2log ( ) log ( ) log ( )e e ea bσ μ= + ,      (5.1) 21 

 22 

where a and b are constants. The parameter b usually lies between 1 and 2. This linear 23 

relation is approximately generated if the density of individuals increases with increasing 24 

occupied area. A nearly exact linear relation emerges when the quantity of (instantaneous 25 
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increasing rate of density)/(instantaneous expansion rate of occupied area) is constant 1 

(Yamamura 2000). Taylor’s power law will be also applicable to the variance of the 2 

distribution of the proportion of pecky rice grains because the proportion of pecky rice 3 

grains will be approximately proportional to the incidence of rice bugs. 4 

 5 

0log [ ( )] log ( ) log ( )e i e eV P a b P= + .     (5.2) 6 

 7 

We obtain the following equations by substituting (5.2) into (4.2) and (4.3). 8 

 9 
2

2 0

2 0 1

1 baPD
n P n

−
= + ,       (5.3) 10 

1
2 2 1

1 0 0
b

nn
D n P aP −=

−
.       (5.4) 11 

 12 

The range of n1 given by (4.4) is expressed by 13 

 14 
1

0
1 2

0

1bsaPn
D sP

− +
≥ .        (5.5) 15 

 16 

 17 

6. CONTROL OF PRECISION 18 

We can obtain the combination of n1 and n2 that achieves the relative precision D 19 

by using (5.4). However, we have a contradiction in this respect; we must know the 20 

quantity of P0 beforehand to estimate P0 with a specified precision by using (5.4). We can 21 

avoid this contradiction by determining the critical quantity of P0 that is tolerable. Let us 22 

denote the critical quantity by Pc. The derivative of (5.3), 2
0( ) /D P∂ ∂ , is negative at least 23 

if b < 2. Therefore, if we use a set of n1 and n2 that achieves a given relative precision (D) 24 

under Pc, we can achieve a smaller D for all P0 values that are larger than Pc. Thus, the 25 
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precision of the estimates becomes superior for a larger P0; we can enhance the precision 1 

of estimates for a worse case than Pc. In that sense, we can control the precision by using 2 

the set of n1 and n2 that are calculated at the critical proportion Pc. 3 

We can calculate the optimal combination of n1 and n2 that minimizes the total 4 

cost of inspection. Let c1 be the cost that is required to collect one rice plant, and let c2 be 5 

the cost that is required to examine one rice grain. Then, the total cost (ctotal) is given by  6 

 7 

ctotal = c1n1 + c2n2.        (6.1) 8 

 9 

Let n1* and n2* be the optimal quantities of n1 and n2, respectively, that minimize the total 10 

cost to achieve a fixed amount of D. We can calculate n1
* by solving total 1/ 0c n∂ ∂ =  after 11 

substituting (5.4) into (6.1) to eliminate n2. 12 

 13 
* 0.5 1.5 22

1 c c2 2
1

b bc a an P P
c D D

− −= + .     (6.2) 14 

 15 

The corresponding quantity of n2
* is calculated by using (5.4). Actual sample size is an 16 

integer, and hence the exact optimal quantity of n1 is either integer just below n1
* or just 17 

above n1
*.  18 

To minimize the quantity D for a fixed total cost (ctotal), let 1n′  and 2n′  be the 19 

optimal quantities of n1 and n2, respectively. Then 1n′  is found to be  20 

 21 
1

total c
1 1

1 2 1 c

b

b

c aP
n

c c ac P

−

−
′ =

⎛ ⎞+⎜ ⎟
⎝ ⎠

.      (6.3)  22 

 23 

The corresponding quantity of 2n ′  is calculated by using (6.1). 24 

It should be noted that the cost function of (6.1) is different from that of a 25 
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two-stage sampling. The total cost in (6.1) is more precisely described by 1 

 2 

ctotal = c0 + c1n1 + c2n2,       (6.4) 3 

 4 

where c0 is the cost for making a composite. If we adopt a two-stage sampling in which 5 

grains are drawn separately from each sampled plant, we can estimate the proportion of 6 

pecky rice grains by using the known formula for two-stage sampling for proportion 7 

(Cochran 1977, p279). In a two-stage sampling, the total cost is roughly given by 8 

 9 

ctotal = (c0 + c1)n1 + c2n2,       (6.5) 10 

 11 

where the cost for preparing composites becomes n1 times larger than that of a composite 12 

sampling. Hence, a two-stage sampling is scarcely adopted for the estimation of the 13 

proportion of pecky rice grains except for experimental purposes.  14 

 15 

 16 

7. REJECTION PROCEDURE USING D = 0.25 17 

In judging the difference in the abundance of insect pests, half of the quantity of 18 

the density is frequently used empirically in Japan. In the official experiments used to 19 

evaluate the effectiveness of pesticides, for example, the abundance of insects in treated 20 

fields is judged to be smaller than that in control fields if the observed difference is larger 21 

than 50% of the quantity of the abundance in control fields (Japan Plant Protection 22 

Association 2003). The definition in (4.1) indicates that the standard error (SE) is given 23 

by DP0. The 95% confidence limits are given by ±1.96×SE in a case of a normal 24 

distribution with a fixed variance. If we use D = 0.25, therefore, the 95% confidence 25 

interval of 0̂P  is approximately given by [ 0̂0.5P , 0̂1.5P ] under the normal approximation 26 
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with a fixed variance. Hence, we empirically use D = 0.25 as a standard, although 0̂P  will 1 

not exactly follow a normal distribution.  2 

In the actual inspection of the proportion of pecky rice grains, we must judge the 3 

acceptance of product by using 0̂P . We consider a rejection procedure where we reject 4 

the product of a field if we obtain 0̂ cP P> . The probability of acceptance is about 0.975 at 5 

P0 = 0.5Pc, 0.5 at P0 = Pc, and 0.025 at P0 = 1.5Pc, if the distribution of 0̂P  follows a 6 

normal distribution with a fixed variance, under the sampling procedure that controls the 7 

relative precision at D = 0.25. Therefore, the producer’s risk (i.e., the probability of false 8 

rejection of a superior product) is 0.025 at P0 = 0.5Pc. The consumer’s risk (i.e., the 9 

probability of false acceptance of an inferior product) is 0.025 at P0 = 1.5Pc. Actual 10 

distribution of 0̂P  will not follow a normal distribution with a fixed variance. However, 11 

we will be able to expect that a superior product having P0 < 0.5Pc is almost certainly 12 

accepted while an inferior product having P0 > 1.5Pc is almost certainly rejected.  13 

 14 

 15 

8. CONTROL OF CONSUMER’S RISK 16 

We can exactly control the consumer’s risk (that is denoted by β), if we assume a 17 

specified distribution for the distribution of Pi. Let us consider a sampling inspection 18 

where the product of a field is rejected if the final sample contains at least one pecky rice 19 

grain. We call this rejection procedure as ‘zero-tolerance method’. The zero-tolerance 20 

method is not adopted in actual examination of pecky rice grains, but it is used in various 21 

inspections such as the import plant quarantine inspection in Japan (Yamamura and 22 

Sugimoto 1995), because it requires the smallest sample size. The sample size (n) in the 23 

Japanese official procedure of import plant quarantine inspection was principally 24 

calculated by using the following formula that is based on the Poisson distribution.  25 

 26 
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c

log ( )en
P
β

= − .        (8.1) 1 

 2 

In most of the standards in industrial inspection such as international standards (ISO) and 3 

Japanese industrial standards (JIS), the consumer’s risk is set at β = 0.1 while the 4 

producer’s risk (that is usually denoted by α) is set at 0.05. However, in the Japanese 5 

import plant quarantine inspection, the consumer’s risk was set at β = 0.05 in principle, 6 

because the primary purpose of the quarantine inspection lies in the protection of 7 

consumer’s risk rather than producer’s risk. If we use β = 0.05, (8.1) is approximately 8 

given by 3/Pc, and hence we can easily calculate the sample size by a mental calculation. 9 

This rule is sometimes called the ‘rule of three’ (Jovanovic and Levy 1997; van Belle 10 

2002; Iwasaki 2005).  11 

The probability that no pecky rice grains are included in the final sample in the 12 

composite sampling is given by the zero-term of (2.7) if we assume a gamma distribution 13 

for Pi. We calculate the sample size so that we have Pr(Z = 0) < β. By equating the mean 14 

and variance of (2.1) to P0 and aP0
b, respectively, we obtain k = P0

2−b/a and λ = P0
1−b/a. 15 

By substituting k = P0
2−b/a and λ = P0

1−b/a into the zero-term of (2.7), we obtain 16 

 17 
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 19 

The first derivative of the left hand side of (8.2) about P0 is negative at least if 1 < b < 2. 20 

Therefore, we can obtain the combination of n1 and n2 to achieve the above inequality for 21 

all P0 satisfying Pc < P0 ≤ 1, by finding the quantities that satisfy Pr(Z = 0| P0 = Pc) = β. 22 

Hence, we have the following relation. 23 

 24 
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 2 

If the heterogeneity V(Pi) approaches zero while P0 is kept at a constant in (2.1), the 3 

quantity of λ increases to infinity while k/λ is kept at a constant. Then, the zero-term of 4 

(2.7) becomes 2 0exp( )n P− . Therefore, (8.3) reduces to (8.1) where n is replaced by n2. If 5 

c1 > 0, the corresponding optimal quantity of n1 is given by the smallest integer that 6 

satisfies sn1 ≥ n2, because n1 does not influence the consumer’s risk if there is no 7 

heterogeneity.  8 

Let n1
# and n2

# be the optimal quantities of n1 and n2, respectively, that minimize 9 

the total cost to achieve a fixed amount of β. We can calculate n1
# by solving 10 

total 1/ 0c n∂ ∂ =  after substituting (8.3) into (6.1) to eliminate n2. 11 

 12 
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 14 

where W is the Lambert W-function. The corresponding quantity of n2
# is calculated by 15 

using (8.3). Actual sample size is an integer, and hence the exact optimal quantity of n1 is 16 

either integer just below n1
# or just above n1

#.  17 

 18 

 19 

9. APPLICATION 20 

We must first estimate the parameters of Taylor’s power law (a and b) for the 21 

proportion of pecky rice grains. We collected data from 16 paddy fields (each area ranges 22 

from 75 to 150 m2) in Niigata Agricultural Research Institute, Crop Research Center (37˚ 23 
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26’ N, 138˚ 52’ E). The rice leaf bug, Trigonotylus caelestialium, is the primary species 1 

causing pecky rice grains in these fields. Three varieties were used: Wasejiman (5 fields), 2 

Koshi-ibuki (5 fields), and Koshi-hikari (6 fields). We selected 20 plants at random from 3 

each field. We recorded the number of pecky rice grains (Xi) and the total number of 4 

grains (si) separately for each plant. The data used in this estimation are stored in the 5 

JABES web-site (http://www.amstat.org/publications/jabes/data.shtml). We can estimate 6 

the mean and variance for each field by the moment method by using (3.3) and (3.4). 7 

However, we instead obtained maximum likelihood estimates, that will be more reliable, 8 

by maximizing the sum of the logarithm of (2.3). The procedure given in Appendix A of 9 

Yamamura and Sugimoto (1995) was used for the estimation. We then obtained 16 pairs 10 

of estimates, k̂  and λ̂ . The quantities of P0 and V(Pi) were estimated by ˆ ˆ/k λ  and 11 
2ˆ ˆ/k λ , respectively. Then, we estimated the power law relation from the 16 pairs of 0̂P  12 

and ˆ( )iV P  by using a linear regression of the form of (5.2) (Figure 1). The explanatory 13 

variable, 0̂P  in this case, has some measurement errors, but a linear regression will 14 

suffice in estimating the parameters of power law (Perry 1981). The estimated parameters 15 

(±SE) were log( )a  = −2.19 ± 0.81 and b̂  = 1.60 ± 0.13. If we used the moment method in 16 

estimating P0 and V(Pi), the estimated parameters (±SE) were log( )a  = −2.41 ± 0.66 and 17 

b̂  = 1.58 ± 0.11 (See the electronic material that is stored in JABES site). The curves in 18 

Figure 2 show the combination of n1 and n2 that satisfy D < 0.25 for all P0 in a range of P0 19 

> Pc. The combination is shown for several quantities of Pc. The number of grains in a 20 

plant was set at 1400, which seems to be the average number of grains per plant. The 21 

required n2 decreases in a decelerating manner with increasing n1.  22 

We must estimate the costs (c1 and c2), to determine the optimal sample size. 23 

About 60 seconds are required in drawing a rice plant and in shelling the rice grains. 24 

About 0.12 seconds are required to examine a rice grain on average. We thus use c1/c2 = 25 

60/0.12 = 500. The grade of rice falls from the first grade to the second grade if the 26 

proportion of pecky rice grains is larger than 0.001 (Ministry of Agriculture Forestry and 27 

Figure 1

Figure 2
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Fisheries 2001). Thus, we use Pc = 0.001. Equation (6.2) indicates that the optimal n1 is 1 

58 in this case. Then, (5.4) indicates that the corresponding n2 is about 31000. We can 2 

alternatively obtain the optimal combination of n1 and n2 in a graphical manner. We have 3 

n2 = (ctotal/c2) − (c1/c2)n1 from (6.1). In our case, we have n2 = (ctotal/c2) − 500n1. The 4 

minimization of ctotal is equivalent to the minimization of the intercept, ctotal/c2. Hence, we 5 

can visually find the optimal combination of n1 and n2 for Pc = 0.001 by finding the point 6 

where the curve of Pc = 0.001 contacts a line with a slope of −500 (see Figure 2).  7 

If we explicitly assume a gamma distribution for the distribution of Pi, we can use 8 

(2.7) to obtain the ‘exact’ confidence interval that is defined by the inverse of testing. By 9 

equating the mean and variance of (2.1) to P0 and aP0
b, respectively, we obtain k = P0

2−b/a 10 

and λ = P0
1−b/a. After substituting the parameters k = P0

2−b/a, λ = P0
1−b/a, n1 = 58, and n2 = 11 

31000 into (2.7), we obtain the lower 95% exact confidence limit by numerically finding 12 

P0 where the upper 2.5% point coincides to 0̂P . Similarly, we obtain the upper 95% exact 13 

confidence limit by numerically finding P0 where the lower 2.5% point coincides to 0̂P . 14 

For example, if we obtain an estimate 0̂P  = 0.001, i.e., Z = 31, the exact confidence 15 

interval is [0.00060, 0.00164]. This exact confidence interval is close to the confidence 16 

interval that is calculated by the normal approximation, 0 0
ˆ ˆ1.96P DP± , that is [0.00051, 17 

0.00149]. Thus, the normal approximation seems satisfactory in this case.  18 

We can calculate another optimal sample size by controlling the consumer’s risk 19 

if we assume a gamma distribution for the distribution of Pi. By substituting the cost ratio 20 

(c1/c2 =  500) into (8.4) and (8.3), we estimate the optimal size of n1 and n2 to be n1
# = 5.5 21 

and n2
# = 5001, respectively (Figure 3). The exact optimal size of n1 and n2 were 6 and 22 

4775, respectively. Equation (8.1) indicates that the required sample size is 2996 if we 23 

perform a simple random sampling. Thus, the required number of grains increases from 24 

2996 to 4775 if we use a composite sampling with subsampling instead of using a simple 25 

random sampling, although we can greatly reduce the cost required for sampling by 26 

adopting composite sampling.  27 

Figure 3
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The optimal sample size for controlling the consumer’s risk at β = 0.05 by a 1 

zero-tolerance method (i.e., n1
# = 5.5 and n2

# = 5001) was much different from the 2 

optimal sample size for controlling the relative precision at D = 0.25 (i.e., n1
* = 58 and n2

* 3 

= 31000). The zero-tolerance method requires a much smaller cost for inspection, but we 4 

must tolerate a larger producer’s risk if we use such a small sample size. The conceptual 5 

difference between two rejection procedures is shown in Figure 4. The broken curve in 6 

Figure 4 indicates the operating characteristic curve (OC-curve) for the zero-tolerance 7 

method using Pc = 0.001 and β = 0.05 under the assumption that Pi fluctuates following a 8 

gamma distribution. The probability of acceptance is exactly 0.05 at P0 = 0.001 by its 9 

definition. However, the probability of acceptance is small even if P0 is much smaller 10 

than Pc; for example, the probability of acceptance is 0.18 even if P0 = 0.0005. Let us next 11 

consider the rejection procedure where we reject the product if we obtain 0̂ cP P>  under 12 

the sampling procedure that controls D = 0.25 for Pc = 0.001. The solid curve in Figure 4 13 

indicates that the producer’s risk is much smaller in this rejection procedure under the 14 

assumption that Pi fluctuates following a gamma distribution. The probabilities of 15 

acceptance at P0 = 0.0005, 0.001, and 0.0015 are 0.995, 0.502, and 0.046, respectively. 16 

As we expected for general distributions, a superior product having P0 < 0.5Pc is almost 17 

certainly accepted while an inferior product having P0 > 1.5Pc is almost certainly rejected 18 

if we use D = 0.25.  19 

 20 

 21 

10. DISCUSSION 22 

We proposed a method to find the optimal sample size for the composite sampling 23 

with subsampling. This method will be applicable to various sampling procedures that 24 

have the following characteristics. (1) The purpose of sampling is the estimation of the 25 

proportion of defective items in a lot. In our case, a defective item corresponds to a pecky 26 

Figure 4
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rice grain; a lot corresponds to a paddy field. (2) The proportion of defective items is 1 

sufficiently small. (3) The sampling items are drawn by increments, that is, several items 2 

are drawn at the same position. In our case, an increment corresponds to a plant. (4) All 3 

collected items are mixed well to yield a composite. (5) A portion of the collected items 4 

are examined by performing a subsampling from the composite.  5 

Composite sampling with subsampling has been widely used in the inspection of 6 

agricultural products. In the procedure to estimate the proportion of commingling of 7 

genetically modified organisms (GMOs) of corn, for example, sampling items are drawn 8 

by increments, and the increments are mixed and subsequently subsampled to form 9 

‘laboratory sample’ (Japanese Ministry of Health Labor and Welfare 2001). Similar 10 

sampling procedures are used in several international standards (ISO 1990, 1999, 2000, 11 

2002, 2003) and FGIS (Federal Grain Inspection Service 1995). When these types of 12 

sampling are used for the estimation of the proportion of defective items, the required 13 

sample size is sometimes calculated by assuming a simple random sampling. Such a 14 

sample size is valid only if the defective items are distributed at random in the lot, that is, 15 

only if there is no spatial heterogeneity in Pi. The variance (3.10) becomes P0/n2 if V(Pi) = 16 

0; that is, the variance becomes identical to the variance of the average of n2 Poisson 17 

variables of mean P0. However, if the distribution of defective items is highly aggregated 18 

in the lot, the variance will be severely underestimated if we use the formula for a simple 19 

random sampling. We should use appropriate equations such as (3.10) if large 20 

heterogeneity is suspected. The corresponding optimal sample size should be calculated 21 

by using (6.2) and (5.4). Similarly, if we perform zero-tolerance method, we should use 22 

(8.4) and (8.3) instead of (8.1) in determining the sample size if large heterogeneity is 23 

suspected.  24 

In constructing the optimal sampling design, we should first estimate the 25 

parameters of Taylor’s power law unless we have clear evidence that the variance V(Pi) is 26 

constant irrespective of P0. If we examine the number of defective items of each 27 
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increment separately, we can estimate P0 and V(Pi) of each lot by using the moment 1 

method by using (3.3) and (3.4). Alternatively, if we can repeat composite sampling 2 

several times in each lot, we obtain 0
ˆ ˆ( )E P  and 0

ˆ ˆ( )V P  for each lot. Then, we can estimate 3 

P0 and V(Pi) of each lot by the moment method by using (3.9) and (3.11). We can estimate 4 

the parameters of Taylor’s power law by using a linear regression such as that in Figure 1 5 

by using several pairs of the estimates of P0 and V(Pi). If we have a clear evidence that the 6 

variance V(Pi) is constant irrespective of P0, only a single estimate of V(Pi) is required; 7 

we can obtain the optimal sample size by substituting a = ( )iV P  and b = 0 to (6.2) and 8 

(5.4) in this case.  9 

We estimated Taylor’s power law in the proportion of pecky rice grains that were 10 

primary caused by the rice leaf bug, T. caelestialium. The parameter b of Taylor’s power 11 

law may change depending on the species; the parameter b is influenced by the dispersal 12 

rate and reproduction rate of each species (Yamamura 2000). The parameter b generally 13 

becomes close to 1 if the insect has a high tendency of dispersal, while it becomes close to 14 

2 if the insect has a low tendency of dispersal (Yamamura 2000). Yamamura (2001) 15 

estimated the parameter b of the distribution of 4 insect pests that have quite different 16 

abilities of dispersal in cabbage fields. The estimated b for the green peach aphid Myzus 17 

persicae, eggs of the diamondback moth Plutella xylostella, eggs of the small white 18 

butterfly Pieris rapae crucivora, and eggs of the beet semi-looper Autographa nigrisigna, 19 

were 1.74, 1.52, 1.28, and 1.15, respectively. The decreasing order of the estimated size 20 

of b coincides with the increasing order of dispersal ability. Pecky rice grains in Japan are 21 

mostly caused by either of the three species of bugs: the rice leaf bug T. caelestialium, the 22 

sorghum plant bug Stenotus rubrovittatus, and the rice bug Leptocorisa chinensis 23 

(Watanabe and Higuchi 2006). The optimal sample size calculated in this paper will be 24 

applicable for most of the northern part of Japan (including Hokuriku, Tohoku, and 25 

Hokkaido districts) where T. caelestialium is the primary species. However, if we apply 26 

the method to the districts where S. rubrovittatus or L.  chinensis are the primary species, 27 
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it will be preferable to re-estimate the parameters of Taylor’s power law for these species.  1 

 2 
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FIGURE CAPTIONS 1 

Figure 1. Taylor’s power law between the mean and variance of the proportion of pecky 2 

rice grains. Three rice varieties are indicated by different symbols. The linear 3 

regression was calculated including three rice varieties: 4 

0
ˆ ˆlog [ ( )] 2.19 1.60log ( )e i eV P P= − + , R2 = 0.91. 5 

 6 

Figure 2. Sample size to achieve a given relative precision (D). The curves indicate the 7 

combination of n1 and n2 that achieve D < 0.25 for all P0 in the range of P0 > Pc. 8 

Five curves for different values of Pc are shown. The solid circle indicates the 9 

optimal combination of n1 and n2 that was calculated by using (6.2) for Pc = 0.001 10 

and (c1/c2) = 500. The broken line indicates a slope of −500. The shaded area 11 

indicates the nonexistent combination of n1 and n2 where the required number of 12 

drawn grains exceeds the total number of drawn grains, i.e., the region of 13 

2 1n sn> . The following parameters were used: s = 1400, a = exp(−2.19), and b = 14 

1.60.  15 

 16 

Figure 3. Sample size to achieve a given consumer’s risk (β). The curves indicate the 17 

combination of n1 and n2 that achieve β < 0.05 for all P0 in the range of P0 > Pc. 18 

Five curves for different values of Pc are shown. The solid circle indicates the 19 

optimal combination of n1 and n2 that was calculated by using (8.4) for Pc = 0.001 20 

and (c1/c2) = 500. The broken line indicates a slope of −500. The meaning of 21 

shaded area is the same as that in Figure 2. The following parameters were used: s 22 

= 1400, a = exp(−2.19), and b = 1.60. 23 

 24 

Figure 4. Conceptual difference between two kinds of control, the control of precision 25 

and control of consumer’s risk. The operating characteristic curves (OC-curves) 26 



 - 32 -

are compared under the assumption that the probability that a rice grain around the 1 

ith plant is pecky (Pi) fluctuates following a gamma distribution spatially. The 2 

broken curve indicates the OC-curve for the zero-tolerance method using Pc = 3 

0.001 and β = 0.05, i.e., n1
# = 5.5 and n2

# = 5001. The solid curve indicates the 4 

OC-curve for the rejection procedure where we reject the product if we obtain 5 

0̂ cP P>  under the sampling procedure that controls D = 0.25 for Pc = 0.001, i.e, 6 

n1
* = 58 and n2

* = 31000. The following parameters were used: a = exp(−2.19) 7 

and b = 1.60. 8 
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